The Capacity of Binary Channels that Use Linear Codes and Decoders
نویسندگان
چکیده
This paper analyzes the performance of concatenated coding systems operating over the binary-symmetric channel (BSC) by examining the loss of capacity resulting from each of the processing steps. The techniques described in this paper allow the separate evaluation of codes and decoders and thus the identification of where loss of capacity occurs. They are, moreover, very useful for the overall design of a communications system, e.g., for evaluating the benefits of inner decoders that produce side information. The first two sections of this paper provide a general technique (based on the coset weight distribution of a binary linear code) for calculating the composite capacity of the code and a BSC in isolation. The later sections examine the composite capacities of binary linear codes, the BSC, and various decoders. The composite capacities of the (8; 4) extended Hamming, (24; 12) extended Golay, and (48; 24) quadratic residue codes appear as examples throughout the paper. The calculations in these examples show that, in a concatenated coding system, having an inner decoder provide more information than the maximum-likelihood (ML) estimate to an outer decoder is not a computationally efficient technique, unless generalized minimum-distance decoding of an outer code is extremely easy. Specifically, for the (8; 4) extended Hamming and (24; 12) extended Golay inner codes, the gains from using any inner decoder providing side information, instead of a strictly ML inner decoder, are shown to be no greater than 0.77 and 0.34 dB, respectively, for a BSC crossover probability of 0.1 or less. However, if computationally efficient generalized minimumdistance decoders for powerful outer codes, e.g., Reed–Solomon codes, become available, they will allow the use of simple inner codes, since both simple and complex inner codes have very similar capacity losses.
منابع مشابه
Linear Programming Decoding for Non-Uniform Sources and for Binary Channels With Memory
Linear programming (LP) decoding of low-density parity-check codes was introduced by Feldman et al. in [1]. In his formulation it is assumed that communication takes place over a memoryless channel and that the source is uniform. Here, we extend the LP decoding paradigm by studying its application to scenarios with source nonuniformity and to decoding over channels with memory. We develop two d...
متن کاملCapacity Achieving Linear Codes with Random Binary Sparse Generating Matrices
In this paper, we prove the existence of capacity achieving linear codes with random binary sparse generating matrices. The results on the existence of capacity achieving linear codes in the literature are limited to the random binary codes with equal probability generating matrix elements and sparse parity-check matrices. Moreover, the codes with sparse generating matrices reported in the lite...
متن کاملLinear Universal Decoding for Compound Channels: a Local to Global Geometric Approach
Over discrete memoryless channels (DMC), linear decoders (maximizing additive metrics) afford several nice properties. In particular, if suitable encoders are employed, the use of decoding algorithm with manageable complexities is permitted. Maximum likelihood is an example of linear decoder. For a compound DMC, decoders that perform well without the channel’s knowledge are required in order to...
متن کاملPolarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver
Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...
متن کاملChannel Polarization and Polar Codes
Polar coding is a new technique introduced by Arıkan [1] based on a phenomenon called channel polarization. Polar codes are appealing as an error correction method since they are proved to achieve the symmetric capacity of any B-DMC using low complexity encoders and decoders, and their block error probability is shown to decrease exponentially in the square root of the block length. In fact, tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Information Theory
دوره 44 شماره
صفحات -
تاریخ انتشار 1998